Business Intelligence

Bussiness intelligence:

The term “Business Intelligence” was originally coined by Richard Millar Devens’ in the ‘Cyclopædia of Commercial and Business Anecdotes’ from 1865. Devens used the term to describe how the banker Sir Henry Furnese, gained profit by receiving and acting upon information about his environment, prior to his competitors. “Throughout Holland, Flanders, France, and Germany, he maintained a complete and perfect train of business intelligence. The news of the many battles fought was thus received first by him, and the fall of Namur added to his profits, owing to his early receipt of the news.” (Devens, (1865), p. 210). The ability to collect and react accordingly based on the information retrieved, an ability that Furnese excelled in, is today still at the very heart of BI.

Business intelligence as it is understood today is said to have evolved from the decision support systems (DSS) that began in the 1960s and developed throughout the mid-1980s. DSS originated in the computer-aided models created to assist with decision making and planning. From DSS, data warehouses, Executive Information Systems, OLAP and business intelligence came into focus beginning in the late 80s.

In 1988, an Italian-Dutch-French-English consortium organized an international meeting on the Multiway Data Analysis in Rome.The ultimate goal is to reduce the multiple dimensions down to one or two (by detecting the patterns within the data) that can then be presented to human decision-makers.

In 1989, Howard Dresner (later a Gartner Group analyst) proposed “business intelligence” as an umbrella term to describe “concepts and methods to improve business decision making by using fact-based support systems.”It was not until the late 1990s that this usage was widespread.
Data warehousing

Often BI applications use data gathered from a data warehouse (DW) or from a data mart, and the concepts of BI and DW sometimes combine as “BI/DW” or as “BIDW”. A data warehouse contains a copy of analytical data that facilitates decision support. However, not all data warehouses serve for business intelligence, nor do all business intelligence applications require a data warehouse.

Using a broad definition: “Business Intelligence is a set of methodologies, processes, architectures, and technologies that transform raw data into meaningful and useful information used to enable more effective strategic, tactical, and operational insights and decision-making.” Under this definition, business intelligence also includes technologies such as data integration, data quality, data warehousing, master-data management, text- and content-analytics, and many others that the market sometimes lumps into the “Information Management” segment. Therefore, Forrester refers to data preparation and data usage as two separate but closely linked segments of the business-intelligence architectural stack.